ASCR Facility Plans

Sudip Dosanjh Director

June 10, 2015

Projections on Moore's Law and other trends

We need to transition to energy efficient architectures

Manycore or Hybrid is the only approach that crosses the exascale finish line

Projected Parallelism for Exascale

Can Get Capacity *OR* Bandwidth But Cannot Get Both in the Same Technology

Cost (increases for higher capacity and cost/bit increases with bandwidth)

	Bandwidth\Capacity	16 GB	32 GB	64 GB	128 GB	256 GB	512 GB	1 TB
1 P	4 TB/s							
	2 TB/s	Stack/PNM						
W	1 TB/s			Interposer				
	512 GB/s				HMC organic			
e	256 GB/s					DIMM		
	128 GB/s							NVRAM

Abstract Machine Model

Leadership Computing for Scientific Discover

- Peer reviewed projects are chosen to advance science, promote innovation, and strengthen industrial competitiveness.
- Demand for these machines has grown each year, requiring recent upgrades of both.

OLCF Titan System Specifications:

- Peak performance of 27.1 Petaflops
 - 24.5 GPU + 2.6 CPU
- 18,688 Hybrid Compute Nodes with:
 - 16-Core AMD Opteron CPU
 - NVIDIA Tesla "K20x" GPU
 - 32 + 6 GB memory
- 200 Cabinets; 710 TB total system memory; 8.9 MW peak power

ALCF Mira System Specifications:

- Peak performance of 10 Petaflops
- 49,152 Compute Nodes each with:
 - 16-Core Power PC A2 CPU with 64 Hardware Threads and 16 Quad FPUs
 - 16 GB memory
- 56 Cabinets; 786 TB total system memory; 4.8 MW peak power

FY 2013 research projects include; advancing materials for lithium air batteries, solar cells, and superconductors; improving combustion in fuel-efficient, near-zero-emissions systems; understanding how turbulence affects the efficiency of aircraft and other transportation systems; designing next-generation nuclear reactors and fuels; developing fusion energy systems

NERSC: 40 years of High Performance Computing **CORPUTE**

System Specifications:

- Hopper XT5 (2010)
 - 1.3PF, 212TB, 2.9 MW peak power
- Edison XC30 (in acc
 - Based on DARPA/DOE HPCS system
 - 2.4PF, 333TB, 2.1 MW peak power
- 400TF mixed use clusters
 - NERSC, JGI, HEP/NP, Materials, Kbase

Computational Research and Theory Building will provide 12 MW power and cooling for future NERSC computing resources

ASCR Computing At a Glance

	now ← —			——→ tu:	ture	NERSC		
System attributes	NERSC Now	OLCF Now ALCF Now		NERSC Upgrade	OLCF Upgrade	ALCF Upgrades		
Name Planned Installation	Edison	TITAN	MIRA	Cori 2016	Summit 2017-2018	Theta	Aurora 2018-2019	
System peak (PF)	2.6	27	10	> 30	150	>8.5	180	
Peak Power (MW)	2	9	4.8	< 3.7	10	1.7	13	
Total system memory	357 TB	710TB	768TB	~1 PB DDR4 + High Bandwidth Memory (HBM) +1.5PB persistent memory	> 1.74 PB DDR4 + HBM + 2.8 PB persistent memory	>480 TB DDR4 + High Bandwidth Memory (HBM)	> 7 PB High Bandwidth On- Package Memory Local Memory and Persistent Memory	
Node performance (TF)	0.460	1.452	0.204	> 3	> 40	> 3	> 17 times Mira	
Node processors	Intel Ivy Bridge	AMD Opteron Nvidia Kepler	64-bit PowerPC A2	Intel Knights Landing many core CPUs Intel Haswell CPU in data partition	Multiple IBM Power9 CPUs & multiple Nvidia Voltas GPUS	2 nd gen Intel Xeon Phi processor (code name Knights Landing)	3 rd gen Intel Xeon Phi processor (code name Knights Hill)	
System size (nodes)	5,600 nodes	18,688 nodes	49,152	9,300 nodes 1,900 nodes in data partition	~3,500 nodes	>2,500 nodes	>50,000 nodes	
System Interconnect	Aries	Gemini	5D Torus	Aries	Dual Rail EDR-IB	Aries	2 nd Generation Intel Omni-Path Architecture	
File System	7.6 PB 168 GB/ s, Lustre [®]	32 PB 1 TB/s, Lustre [®]	26 PB 300 GB/s GPFS™	28 PB 744 GB/s Lustre [®]	120 PB 1 TB/s GPFS™	10PB, 210 GB/s Lustre initial	150 PB 1 TB/s Lustre [®]	

ESnet Goes Global: Extension to Europe

- 25% of all ESnet traffic goes to/from Europe
- 3x100+ Gbps across the Atlantic with redundant paths to serve all DOE missions
- Ready by March 2015 to support LHC Run 2 (was operational in Jan 2015)
- Will support 10x increase in transatlantic traffic from Large Hadron Collider

Exascale Computing Initiative

Timeline

P1 Petascale Prototype

P2 Exascale Prototype

Recent Developments at NERSC

Sudip Dosanjh Director

June 10, 2015

Cori will be installed in the Computational Research and Theory (CRT) Facility

Four story, 140,000 GSF

- 300 offices on two floors
- $-20K \rightarrow 29Ksf HPC floor$
- 12.5MW -> 40 MW to building

Located for collaboration

- CRD and ESnet
- UC Berkeley

Exceptional energy efficiency

- Natural air and water cooling
- Heat recovery
- PUE < 1.1
- LEED gold design
- Initial occupancy 2015

NERSC Timeline

We directly support DOE's science mission

- We are the primary computing facility for DOE Office of Science
- DOE SC allocates the vast majority of the computing and storage resources at NERSC
 - Six program offices allocate their base allocations and they submit proposals for overtargets
 - Deputy Director of Science prioritizes overtarget requests
- Usage shifts as DOE priorities change 5.0%

BES

34%

2002

2014

BER

18%

Other

ASCR 3%

6%

HEP

15%

NP

9%

FES

15%

25.0%

20.0%

We support a broad user base

- ~6000 users, and we typically add 300-500 per year
- Geographically distributed: 48 states as well as multinational projects

- Many codes (600+) and algorithms
- Computing at scale and at high volume

NERSC collaborates with computer companies to deploy advanced HPC and data resources

Hopper (N6) and Cielo (ACES) were the first Cray petascale systems with a Gemini interconnect

 Architected and deployed data platforms including the largest **DOE** system focused on genomics

 Edison (N7) is the first Cray petascale system with Intel processors, Aries interconnect and **Dragonfly topology (serial #1)**

Cori (N8) will be one of the first large Intel KNL systems and will have unique data capabilities

- 19 -

NERSC YEARS at the FOREFRONT 1974-2014

- Cori will support the broad Office of Science research community and begin to transition the workload to more energy efficient architectures
- Cray XC system with over 9300 Intel Knights Landing compute nodes –mid 2016
 - Self-hosted, (not an accelerator) manycore processor with over 60 cores per node
 - On-package high-bandwidth memory
- Data Intensive Science Support
 - 10 Haswell processor cabinets to support data intensive applications – Summer 2015
 - NVRAM Burst Buffer to accelerate data intensive applications
 - 28 PB of disk, >700 GB/sec I/O bandwidth
- Robust Application Readiness Plan
 - Outreach and training for user community
 - Application deep dives with Intel and Cray
 - 8 post-docs integrated with key application

Image source: Wikipedia

System named after Gerty Cori, Biochemist and first American woman to receive the Nobel prize in science.

Intel "Knights Landing" Processor

- Next generation Xeon-Phi, >3TF peak
- Single socket processor Self-hosted, not a co-processor, not an accelerator
- Greater than 60 cores per processor with support for four hardware threads each; more cores than current generation Intel Xeon Phi™
- Intel® "Silvermont" architecture enhanced for high performance computing
- 512b vector units (32 flops/clock AVX 512)
- 3X single-thread performance over current generation Xeon-Phi coprocessor
- High bandwidth on-package memory, up to 16GB capacity with bandwidth projected to be 5X that of DDR4 DRAM memory
- Higher performance per watt

Knights Landing Integrated On-Package Memory

Cache Model Let the hardware automatically manage the integrated on-package memory as an "L3" cache between KNL CPU and

external DDR

Flat Model Manually manage how your application uses the integrated on-package memory and external DDR for peak performance

Hybrid Model Harness the benefits of both cache and flat models by segmenting the integrated on-package memory

Maximum performance through higher memory bandwidth and flexibility

We will initially focus on 20 codes

Breakdown of Application Hours on Hopper and Edison 2013

- 10 codes make up 50% of the workload
- 25 codes make up 66% of the workload
- Edison will be available until 2019/2020
- Training and lessons learned will be made available to all application teams

20 NESAP Tier-1 and Tier-2 codes

ASCR (2)

Almgren (LBNL) –
BoxLib AMR
Framework
used in combustion,
astrophysics

Trebotich (LBNL) – **Chombo-crunch** for subsurface flow

BES (5)

Kent (ORNL) – **Quantum Espresso**Deslippe (NERSC) – **BerkeleyGW**Chelikowsky (UT) – **PARSEC** for excited state materials
Bylaska (PNNL) – **NWChem**Newman (LBNL) – **EMGeo** for geophysical modeling of Earth

BER (5)

Smith (ORNL) – **Gromacs**Molecular Dynamics
Yelick (LBNL) – **Meraculous**genomics
Ringler (LANL) – **MPAS-O**global ocean modeling
Johansen (LBNL) – **ACME**global climate
Dennis (NCAR) – **CESM**

HEP (3)

Vay (LBNL) – WARP & Synergia accelerator modeling Toussaint (U Arizona) – MILC Lattice QCD Habib (ANL) – HACC for *n*-Body cosmology

NP (3)

Maris (U. Iowa) – MFDn

ab initio nuclear structure

Joo (JLAB) – Chroma

Lattice QCD

Christ/Karsch (Columbia/

BNL) – DWF/HISQ

Lattice QCD

FES (2)

Jardin (PPPL) – **M3D**continuum plasma
physics
Chang (PPPL) – **XGC1**PIC plasma

We are launching the NERSC Exascale Science Applications Program (NESAP)

NESAP components:

DOE Facilities are Facing a Data Deluge

NERSC users import more data than they export!

- Data partition with large memory nodes, software to enable data workflows (including user defined images)
- IO enhancements-- NVRAM nodes on the interconnect fabric for caching, software defined networking
- Larger disk system

Goals are to enable the analysis of large experimental data sets and in-situ analysis coupled to Petascale simulations

NERSC, LANL and Sandia formed a partnership for next-generation supercomputers

Alliance for application Performance at Extremescale (APEX)

- Visible collaboration between ASCR and ASC
- Strengthen impact on industry
- Address challenges transitioning applications to advanced manycore architectures with a broader coalition
- Risk mitigation on technical challenges

Successive deployments

- Informal partnership on Hopper and Cielo (2010)
- Cori and Trinity in 2015-2016
- NERSC-9 and Crossroads in 2020

